
Generic “Composite”
in Python

https://www.meetup.com/pyweb-il/events/301896000/


Asher Sterkin
A Software Engineer since 1978

https://www.linkedin.com/in/asher-sterkin-10a1063
https://www.slideshare.net/AsherSterkin
https://asher-sterkin.medium.com/


● Design Patterns
● The “Composite” Design Pattern
● Need for a Generic One
● Meta-Programming in Python
● Design Patterns Density
● Implementation Details
● More Advanced Case Study
● Things to Remember

Table of Contents



The Wikipedia definition:

“In software engineering, a 
software design pattern is a 
general, reusable solution to a 
commonly occurring problem 
within a given context in software 
design.”

Design Patterns

A good collection of Design Patterns in Python:
https://github.com/faif/python-patterns 

Fundamental, though a bit 
outdated, with examples in C++ 
and Java

Origin of the Concept of Design 
Patterns

https://en.wikipedia.org/wiki/Software_design_pattern
https://www.amazon.com/Timeless-Way-Building-Christopher-Alexander/dp/0195024028
https://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
https://github.com/faif/python-patterns


Consider the Composite Design Pattern 
when working with recursive tree-like 

data structures.

“Composite” Design Pattern Context

https://en.wikipedia.org/wiki/Composite_pattern


Composite Design Pattern (from Wikipedia)

Traditional OO Implementation

Client

operation()

Component

*

operation()

Composite

operation()

Leaf

https://en.wikipedia.org/wiki/Composite_pattern


● Implement all methods from the abstract interface
● In each Composite method:

○ Iterate over all child components
○ Call the corresponding method on each child
○ Aggregate the results into the Composite's operation result

Traditional OO Implementation



Can we develop a generic solution?



Why Invest in a Generic Solution?

● Addressed a Real Problem (next slide)
● Enhanced Focus by separating the generic subdomain from the core
● Deeper Insight into advanced Python capabilities and limitations



build_service_parameters()
build_service_template_variables()
build_service_conditions()
build_service_outputs()
build_service_resources()
build_function_permissions()
build_function_resources()
build_function_resource_properties()
build_function_environment()

Non-Trivial Case: Service Template Builder Composite

ResourceTemplateBuilder

CompositeResourceTemplateBuilder

*

● Every high-level feature (e.g. MySQL Database) has multiple sub-features:
○ Data on rest encryption: yes/no
○ Private network protection: yes/no
○ Interface: (e.g. db_connection vs SQLAlchemy)
○ Allocation: internal/external
○ Access: read-only/read-write
○ User authentication: yes/no

● Each sub-feature might have multiple flavours (e.g. type of encryption)
● Every feature or sub-feature requires one or more cloud resources
● Every service function has to be properly configured to get an access to each 

feature resources
● Every service function implements a particular API, which might bring its own 

resource feature(s)

Service Template 
Builder Composite

API Template Builder 
Composite

API Resource 
Template Builder 

Feature Template 
Builder Composite

Feature Resource 
Template Builder 



Python Meta-Programming

Core Language

Meta-Programming

Standard Library Native Code Extensions

Macro Processing

3rd Party Libraries/FrameworksConfiguration
Native Code Extensions

Daemon Process

Code Generator(s)Blueprint/Template

Runtime Environment

Generics, decorators, meta-classes, inspect, 
ast, eval Static Code Analysis

Plugins



Sample Code



Class Decorator 



Constructor



Iterator



Methods



Mypy Plugin



● The measurement of the amount of design that can 
be represented as instances of design patterns

● When applied correctly, higher design pattern 
density implies a higher maturity of the design.

● When applied incorrectly, leads to disastrous 
over-engineering.

Design Pattern Density



build_service_parameters()
build_service_template_variables()
build_service_conditions()
build_service_outputs()
build_service_resources()
build_function_permissions()
build_function_resources()
build_function_resource_properties()
build_function_environment()

<<null object>>
<<builder>>

ResourceTemplateBuilder

Putting All Patterns Together

*

<<composite>>
<<iterator>>

CompositeResourceTemplateBuilder

<<decorator>>
composite(cls)

<<factory method>>
get_builder(config)

XyzResourceTemplateBuilder

<<specification>>
XyzResourceSpec

*

For each method, define 
a default implementation 
that returns an empty 
structure

<<decorator>>
ResourceTemplateBuilderDecorator

https://en.wikipedia.org/wiki/Null_object_pattern
https://en.wikipedia.org/wiki/Builder_pattern#:~:text=The%20builder%20pattern%20is%20a,Gang%20of%20Four%20design%20patterns.
https://en.wikipedia.org/wiki/Composite_pattern
https://en.wikipedia.org/wiki/Iterator_pattern
https://en.wikipedia.org/wiki/Decorator_pattern#:~:text=In%20object%2Doriented%20programming%2C%20the,objects%20from%20the%20same%20class.
https://en.wikipedia.org/wiki/Factory_method_pattern
https://en.wikipedia.org/wiki/Specification_pattern#:~:text=In%20computer%20programming%2C%20the%20specification,context%20of%20domain%2Ddriven%20design.
https://en.wikipedia.org/wiki/Decorator_pattern#:~:text=In%20object%2Doriented%20programming%2C%20the,objects%20from%20the%20same%20class.


● No Visitor Design Pattern implementation

● Limited set of aggregation functions (add and merge)

● No support for Abstract Base Classes by mypy Plugin

● Type “cheating” within decorator

Limitations (Reflect my Practical Needs)

https://en.wikipedia.org/wiki/Visitor_pattern
https://docs.python.org/3/library/abc.html


● Design Patterns are extremely powerful tools

● Design Patterns work best in concert (high density)

● Composite Design Pattern is the first choice for hierarchical data structures

● Python metaprogramming could make miracles

● Generic solutions usually work better

● Python metaprogramming is imperfect

● With more power comes more responsibility

● Chase after advanced techniques for no reason is a sure road to hell

Things to Remember

https://en.wikipedia.org/wiki/Composite_pattern


Discussion:

● Design Patterns
● Metaprogramming
● LLMs
● Code Assistants


